Search for the Enhancement of the Thermal Expansion Coefficient of Superfluid 4 He near T_{λ} by a Heat Current

Yuanming Liu, Ulf E. Israelsson, and Melora Larson Low Temperature Science and Technology

* This research was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA).

OUTLINE

- Motivation
- Theoretical prediction
- Experimental method
- Data analysis
- Discussion

Motivation

- Why to study the superfluid transition in the presence of a heat current (Q)?
 - Superconductor carrying an electric current, but with critical fluctuations.
 - Heat current truncates divergence of the correlation length ξ
 - Physical properties become non-linear and Q-dependent
 - Model system to study non-equilibrium phase transitions and critical phenomena
 - Verify theoretical predictions based on Renormalization-Group calculation
- Why the thermal expansion coefficient?
 - To search for the enhancement by a heat current

Theoretical Prediction

— C_P enhanced by a heat current

$$\Delta C_P(T,Q) = t^{-\alpha} f(Q/Q_c)$$

- $-\beta_P$ exhibits the same critical behavior as the specific heat C_P
 - \rightarrow β_P enhanced by heat current

$$C_{P} = VT \left(\frac{\partial P}{\partial T} \right)_{\lambda} \beta_{P} + T \left(\frac{\partial S}{\partial T} \right)_{\lambda}$$
$$\beta_{P} = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_{P}$$

More easily measured under pressure
 Byproduct of hot volume pressure regulation

Apparatus: Low-gravity Simulator

Thermal Conductivity Cell & Pressure Regulation

Pressure regulation:

Pressure Gauge + Hot Volume + LT Valve Resolution: fraction of µbar (rms)

K. H. Mueller, G. Ahlers, and F. Pobell (1976)

 $V_{HV} \sim V_{cell} \sim 0.1 \text{ cc}$

Cell Characteristics

- ✓ Sidewall: 0.004" Stainless Steel
- ✓ Endcaps: OFHC copper
- ✓ Thermometers: He-4 melting curve thermometers (MCT)
- ✓ Dimensions: 0.5cm did., 0.5cm tall
- ✓ Epoxy seal

Hot Volume Technique

• From mass conservation $(M = M_{HV} + M_{cell})$

$$\beta_{P,cell} = \lim_{\Delta T(cell) \to 0} -\beta_{P,HV} \frac{(\Delta T \cdot V \cdot \rho)_{HV}}{(\Delta T \cdot V \cdot \rho)_{cell}}$$

LT valve (HV) $(\Delta T \cdot V \cdot \rho)_{HV}$ $(\Delta T \cdot V \cdot \rho)_{cell}$ Cell

In a ramping experiment:

$$eta_{P,cell} \propto eta_{P,HV} (\partial T_{HV} / \partial T_{cell})$$
 Slope of the temperature plot of T_{HV} vs. T_{cell}

To improve sensitivity, T_{HV} is chosen so that $\beta_{P,HV}$ is close to 0.

Raw Ramping Data

Time Series Data

Data Analysis - Calculation

$$\Delta \beta_P(T,Q) = -t^{-\alpha} f(Q/Q_c)$$
When Q<C, $f(Q/Q_c) = (A/600)(Q/Q_c)^2$

A=69 from Harter et al (experiment, A=6.25 from HD, 9.2 from GCH)

Data Analysis - Comparison

Find T_{HV} where $\beta_{HV}=0$

From Measured β_{cell} of K. H. Mueller, G. Ahlers, and F. Pobell, β_{HV} can also be determined.

Discussions

- We have performed experimental search for the enhancement of the thermal expansion coefficient by a heat current
- We have considered the rounding effect due to the variations in the local reduced temperature: t (z,Q)
 - $-T_{\lambda}$ variation due to gravity
 - T(t,z,Q) due to mutual friction
 - $-\Delta T(t,Q)$, offset from T_top due to Kapitza resistance

The last two factors lead to a larger temperature variation in the sample cell, therefore a larger rounding effect, for larger Q,

- Future work:
 - Measurements in reduced gravity
 - Increase the volume ratio (cell volume vs hot volume)

The superfluid transition in ⁴He in the presence of a heat current (Q) provides an ideal system for the study of phase transitions under non-equilibrium, dynamical conditions. Many physical properties become nonlinear and Q-dependent near the transition temperature, T_{λ} . For instance, the heat capacity enhancement by a heat current was predicted theoretically¹, and observed experimentally2. Because the thermal expansion coefficient is a linear function of the specific heat near T_{λ} , both exhibit similar critical behaviors under equilibrium conditions. An enhancement of the thermal expansion coefficient is also expected if a similar relationship exists under non-equilibrium conditions. We report our experimental search of the enhancement of the thermal expansion of superfluid ⁴He by a heat current (0<Q<100 $\mu\text{W}/\text{cm}^2$). We conducted the measurements in a thermal conductivity cell at sample pressures of SVP and 21.2 bar. The measurements were also performed in a reduced gravity environment of 0.01g provided by the low-gravity simulator we have developed at JPL.

- 1. R. Haussmann and V. Dohm, Phys. Rev. Lett. 72, 3060 (1994);
- T.C.P. Chui et al., Phys. Rev. Lett. 77, 1793 (1996).
- 2. A.W. Harter et al., Phys. Rev. Lett. 84, 2195 (2000).